		GINEERING,RETANG-752054
DISCIPLINE: CIVIL	SEMESTER: 3RD	NAME OF THE TEACHING FACULTY:
ENGINEERING	SEM	ER. PURAK SUNDARAY
		&
		ER. MEERA BEHERA
CLID IECT.	No of Days/	Semester From Date: 15/09/2022
SUBJECT:	Per week class	To Date: 22/12/2022
STRUCTURAL MECHANICS	allotted:	No. Of Weeks: 15
(TH-1)	5 Class P/W (75)	IVO. OT WEEKS. 13
WEEK	CLASS DAY	THEORY TOPICS
1 _{st}	1 _{st}	Basic Principle of Mechanics: Force, Moment, support conditions.
	2 _{nd}	Conditions of equilibrium, C.G & MI, Free body diagram.
	3rd	Review of CG and MI of different sections.
	4 _{th}	Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity,
	5 _{th}	Introduction to stresses and strains: Other Mechanical properties of materials – Brittleness, Ductility,
	1 st	Types of stresses -Tensile, Compressive and Shear stresses
	2 _{nd}	Types of strains - Tensile, Compressive and Shear strains.
2 _{nd}	3rd	Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and
	4 _{th}	Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain,
	5th	Computation of stress, strain, Poisson's ratio, change in dimensions and volume etc.
	1 st	Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.
	2nd	Revision of previous classes about stress, strain and material property and all.
3rd	3rd	Behaviour of ductile and brittle materials under direct loads.
	4 _{th}	Stress Strain curve of a ductile material, Limit of proportionality.
	5 _{th}	Elastic limit, Yield stress, Ultimate stress, Breaking stress.
	1 st	Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in

	2 _{nd}	Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight.
4 _{th}	3rd	Principal stresses and strains: Occurrence of normal and tangential stresses,
	4 _{th}	Concept of Principal stress and Principal Planes, major and minor principal stresses.
	5 _{th}	Minor and major stresses and their orientations, Mohr's Circle and its application to solve problems of complex
5 _{th}	1 st	Stresses in beams due to bending: Bending stress in beams.
	2 _{nd}	Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure.
	3 _{rd}	Stresses in beams due to bending: Flexural stress distribution.
	4 _{th}	Curvature of beam – Position of N.A. and Centroidal Axis.
	5th	Flexural rigidity – Significance of Section modulus.
6 _{th}	1st	Shear stresses in beams: Shear stress distribution in beams of rectangular.
	2 _{nd}	Circular and standard sections symmetrical about vertical axis.
	3rd	Stresses in shafts due to torsion: Concept of torsion.
	4 _{th}	Basic assumptions of pure torsion, torsion of solid and hollow circular sections.
	5th	Polar moment of inertia, torsion shearing stresses.
	1st	Angle of twist, torsional rigidity, equation of torsion.
$7\mathrm{th}$	2 _{nd}	Combined bending and direct stresses: Combination of stresses Combined direct and bending stresses.
	3rd	Maximum and Minimum stresses in Sections, Conditions for no tension.
	4 _{th}	Middle third/fourth rule, Core or Kern for square,
	5 _{th}	Limit of eccentricity and
	1 st	Rectangular and circular sections, chimneys, dams and retaining walls.
	2 _{nd}	Details of Retaining Walls and Chimneys.
8 _{th}	3rd	Columns and Struts, Definition.

	4 _{th}	Short and Long columns, End conditions.
	5 _{th}	Equivalent length / Effective length.
9 _{th}	1 _{st}	Revision of last classes about column and strut.
	2 _{nd}	Revision of last classes about Equivalent and effective Length.
	3rd	Slenderness ratio, Axially loaded short and long column.
	4 _{th}	Euler's theory of long columns, Critical load for Columns with different end conditions.
	5th	Shear Force and Bending Moment: Signs Convention for S.F. and B.M
$10_{ m th}$	1st	S.F and B.M of general cases of determinate beams with concentrated loads and udl only.
	2 _{nd}	S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams.
	3 _{rd}	Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.
	4 _{th}	Revision of last class about of point of contra flexure.
	5th	Revision of previous classes about S.F. and B.M.
11th	1st	Revision of S.F and B.M sign convention.
	2 _{nd}	Revision of about Beam and Load and trusses.
	3rd	Introduction: Shape and nature of elastic curve (deflection curve).
	4 _{th}	Relationship between slope deflection and curvature (No derivation).
	5th	Importance of slope and deflection.
12th	1st	Revision of last class about slope and deflection and its importance.
	2 _{nd}	Revision of last class about Elastic curve.
	3rd	Slope and deflection of cantilever and simply supported beams under concentrated and
	4 _{th}	Uniformly distributed load (by Double Integration method, Macaulay's method).
	5th	Revision of last class about UDL(Uniformly Distributed Load)

13th	1st	Revision of last class about Slope and deflection.
	2nd 3rd	Indeterminacy in beams, Principle of consistent deformation/compatibility Analysis of propped cantilever.
	3rd	Analysis of propped cantilever.
	4 _{th}	Fixed and two span continuous beams by principle of superposition
	5th	SF and BM diagrams (point load and udl covering full span).
14 _{th}	1 _{st}	Introduction: Types of trusses, statically determinate and indeterminate trusses
	2 _{nd}	Degree of indeterminacy, stable and unstable trusses, advantages of trusses.
	3 _{rd}	Revision of last classes about Trusses and Beam and sign convention of S.F and B.M.
	4 _{th}	Types of Trusses and their uses.
	5th	Different types of roof trusses and their uses
15th	1 st	Previous year questions discussion and revision.
	2 _{nd}	Again revision of chapter 08 and questions discussion.
	3rd	Revision of last chapter 05 and previous year questions will be discussed.
	$4_{ m th}$	Remind the important questions about all chapters.
	5 _{th}	Important questions will be discussed for the semester Exam.